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The methods of quasilinearization and invariant imbedding are combined to form 
an effective numerical algorithm for solution of the two-point boundary value problem 
du/dz = f(u, v, z), -dv/dz = g(u, v, z), u(O) = a, v(x) = y, 0 < z < x. The method is 
applied to several examples and seems to be fast, accurate, and simple to use. It can 
be generalized and extended in various ways. 

1. INTRODUCTION 

The method of invariant imbedding has been investigated extensively over the 
last decade as a technique of both analytical and computational interest in the 
study of two-point boundary value problems. While its origins lie in transport 
theory, the device has been applied to many problems arising in other fields. 
However, most of the problems successfully attacked have been linear in structure. 
When the imbedding method is applied to nonlinear problems, the resulting equa- 
tions are usually nonlinear partial differential equations [I]. Frequently these 
equations appear at least as difficult to handle as the original problem and the 
advantages that the method provides in treating many linear problems are no 
longer present. 

To circumvent this difficulty, we combine the techniques of invariant imbedding 
and quasilinearization. The latter device reduces certain classes of nonlinear prob- 

1 Research supported in part by the US. Atomic Energy Commission, Project Themis, and 
National Science Foundation Grant GP-5967. 
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lems to sequences of linear problems. Invariant imbeddi~g is 
member of the sequence. Under appropriate conditions the co 
of solutions approaches the solution of the original problem. The f~~~arne~~~~ 
invariant imbedding equation at each stage is the familiar iccati e~~atio~§ whose 

solution is often very well-behaved. (This is a ~ri~~i~a~ advantage of the 
method.) The entire scheme appears to be accurate, fast, and easy to 

program. It is easy to see that the method converges any time the 
technique employed by itself converges. 

The idea of combining the two methods is not new. Such a ~o~b~~atio~ has been 
in chemical engineering studies [2]. It has also been tried, in somewhat di~e~~~~ 

form, on some sample problems at RAND 131. 
The method of invariant imbedding is in a state of co~t~~~ing 

as many ramifications. Those aspects of the method used in this paper have many 
aims of contact with the device referred to in the Russian literature by the name 

of simple factorization or the sweep method (see [14]). Also, the form of qn~s~~~~~~- 
ization we have employed is similar to Newton’s method (see Es]). 

2. THE ALGOIWHM 

e consider the two-point boundary value problem 

dV -- 
dz 

= g(u, v, z), (2.1) 

u(0) = a, w = Y, o<z,<x. 

uasilinearized, equation (2.1) is replaced by 

where 
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As mentioned in $1, for a significant class of problems the functions u, and v, 
converge to the solutions u and v of (2. l), at least provided u0 and v, are reasonably 
well chosen (see [6]). 

We now use invariant imbedding on (2.2) and write 

(2.4) 

The functions R,+l and Qn,, are then known to satisfy [& 71 

d&w, _ - - &Sz) + Ktd + W-41 Rn+&) + GM E+dz), dz 
&+dO) = 0, 

and 

(2.5) 

dQla+l - = [A&) + C,(z) &,&)I Qn+dz> + &a+,@) &z-(z) + S+(z), dz 
Q!n+dO> = a. (2.6) 

Equations (2.5) and (2.6) are the basic imbedding equations. 
Let us consider how the above equations may be used. We suppose all functions 

to be known at ~1. We then integrate the Riccati equation (2.5) from z = 0 to z = x. 
Next Q,, is found from (2.6). Using (2.4) in (2.26) yields 

dvm+x _ - - - WWn+d4 V,+I dz (4 + Qn+&>l + %(z> vnd4 4 K-(z), 
%+1(4 = .JJ* (2.7) 

Equation (2.7) can now be integrated from z = x to z = 0. Finally, u,, is obtained 
algebraically from (2.4). (In practice, equations (2.5) and (2.6) are most easily 
treated as a system.) 

The choice of u, and v,, is left open. Rather obvious is the possibility 

2$(z) - a, 

Q(Z) = y. 
(2.8) 
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Partial knowledge of the solution of (2.1) or of some of its properties may 
in selecting ug and U, . Indeed, such knowledge may be vital in obtaining conver- 
gence. 

The algorithm we have developed involves only three integrations at each itera- 
tion and hence seems to have advantages over similar ones (see IZ]). As pointed 
out earlier; the Riccati equation (2.5) is usually well behaved ~~meri~a~~y. 

3. SOME NUMERICAL 

In this section we present three examples to illustrat numerical t~c~~i~~e 
described above. We begin with a brief discussion of umerical ~roce~~~cs 
involved in implementing this method. An IIM 360 ode1 44, using double 

cision arithmetic, was used for all computations. fourth order R~~~e-~~tta 
eme was used for the numerical integration of e (Zi), (2.6) and (2.7) 

with a step size varying from .OOl to .Ol depending on the particular proble 
Past experience has shown that the imbedding method is most useful when 

applied to a family of problems of different ““lengths” X. In our examples we 
therefore introduce the family 

g = f(u, v, z), 

dv -- 
dz = d% 0, z?, 

u(0) = a, f4xd = Y, i = 1, 2 ,..., iv, 

0 tx, <x, < a** <xpJ. 

enote the solution of the system (3.1) on 10, XJ by z&(z), vi(z). For d = 1 the 
sequences (uR1(z)> and (vnl(z)> were generated using the initial iterates uol(z) and 
vol(z) as given by (2.8). For i = k, 2 d k < N, the sequences (unk(z)} and {unzc(z)) 
were generated using 

ugk(z) = 
I 
zF(z), 0 < z < Xk-1 
Y, xk-I < 2 d xk * 

(3.2a) 

(3.2s) 

For xk - xkel small, ugk(z) and ogk(z), as defined in (3.2), were quite close to the 
solutions U”(Z) and v”(z) respectively and the iterates converged quite r 

e now proceed to discuss our examples. 
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Example I. Perhaps the most classical nonlinear equation on which to try our 
numerical method is 

We pose this in the form 

d2# _ = e#. 
dz2 

du -ZZu 
dz ’ 

dv --z -+ 
dz ’ 

u(0) = 0, v(x) = y. 

The analytic solution is given implicitly by 

~~z-~log~(c+~l+c’)~~j~ =O, (3.4a) 

and 

~~Z-~~cOs-~~~j-coS-lICIj =o. 

Here c is of course determined in each case by using the boundary condition 
U(X) = y and the relationship 

&u(x)~ = eUcz) + c2, 

which may be obtained by a simple manipulation using (3.3). 
The numerical results obtained for y = 0 are given in Table I. (For convenience 

we give only the values of u and v at the boundary points, z = 0 and z = x.) 

TABLE I 

0.1 -.0050 -,0997 
0.2 -.0197 -A974 
0.3 -.0434 -.2915 
0.4 -.0751 -.3805 
0.5 -.1137 -.4636 
0.6 -.1578 -.5404 
0.7 -.2063 -.6106 
0.8 -.2581 -.6745 
0.9 --.3123 -.7324 
1.0 -.3681 -.7848 
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These results were checked against the analytical solution given b 
agreement was obtained. The computations in the preceding 
mirnutes of computing time. This compares very favorably 
available. 

E~uvpzpke 91. As a second example, we examine 

u(0) = 0, $4 = Y, E 2 0. 

Equation (3.5) describes a simple transport process involving binary fissio 
particle-particle interaction. The solution has been analyzed in [a]. If E = 
system becomes critical for x = ~r/2; if E > 0, there is no critical length reg 
of the input y. 

For y = 5, E = .Ol, we obtained the results in Table If, while Table $11 gives 
data for y = 100 and E = .01. The results are compatible with those in [8]* 

TABLE IL 

1.0 7.1197 8.4321 
1.1 8.6395 9.9049 
1.2 10.6016 11.6356 
1.3 13.1988 14.0201 
1.4 16.6103 11.3025 
1.5 21.2172 21.6913 

1.0 76.5862 137.7468 
1.1 79.3445 135.1366 
1.2 81.7244 132.6055 
1.3 83.7870 130.2344 
1.4 85.5818 121.9925 
1.5 87.1498 125.8811 
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Example III. Finally, to test the method on an ill-behaved problem, we chose 

dv w-z 
dz --u(l + u”), (3.6) 

u(0) = 0, 

The solution to (3.6) is 

v(x) = sec2 x, 0 < z < %-12. 

u(z) = tan 2, 
v(z) = sec2 2. 

Clearly for x near ~7-12, the problem presents a numerical challenge. Physically, we 
may think of 42 as the “critical” length of a nonlinear transport problem, although 
there has been no effort to develop a realistic transport analogy. The possibility of 
using our device to investigate problems of criticality and cascading was influential 
in our overall study, however. 

The data in Table IV were generated using an integration step size of .005. The 
scheme defined by equations (3.2) was used to begin each iteration (k > 2). The 
number of iterations which yielded a uniform pointwise error of less than 5 x lo--” 
is recorded as a matter of interest. 

TABLE IV 

X tan x 
Number of 

Iterations 

1.0 1.5574 1.5574 
1.3 3.6022 3.6021 
1.5 14.1073 14.1014 
1.51 16.4654 16.4281 
1.52 19.6856 19.6695 
1.53 24.5293 24.4984 
1.54 32.5326 32.4611 
1.55 48.2975 48.0785 

4. SUMMARY AND CONCLUSIONS 

We have presented an algorithm for the numerical solution of a class of two point 
boundary problems which seems to be simple to apply, relatively fast and accurate. 
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Many gene~a~i~atio~§ and extensions come to mind at once. For example 
in which u(x) is assigned can be handled similarly [9]. Further, systems of d 

uations can be treated by obvious modifications of the method. 
Convergence criteria for the method are clearly closely linke 

linearization in general. As indicated in the examples, however, 
in practice to improve convergence by studying a sequence of pr 
and larger intervals. The algorithm is especially easy to use wi 
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